
PDM-to-PCM Microphone Signal Conversion on
FPGA Using CIC and FIR Filters

Yatian Liu
University of Michigan

Ann Arbor, US

Julia Lanier
University of Michigan

Ann Arbor, US

Kevin Fu
University of Michigan

Ann Arbor, US

Alanson Sample
University of Michigan

Ann Arbor, US

Abstract—Digital microphones are one of the most common
sensors used in people’s daily life. MEMS digital microphones
usually output in pulse-density modulation (PDM) encoding and
the output needs to be converted to pulse-code modulation (PCM)
encoding for further analysis. This essay presents a PDM-to-PCM
signal conversion system implemented on an Intel Arria V GX
FPGA. The conversion is done using CIC and FIR filters, and the
system can currently receive data from two microphones at the
same time and output the converted PCM signals on GPIO pins.
The code can be easily extended to support a larger microphone
array in the future.

I. INTRODUCTION

Digital microphones are one of the most common sensors
used in people’s daily life. Of all types of digital microphones,
MEMS microphones are becoming more popular because of
their smaller size compared to traditional condenser micro-
phones. Pulse Density Modulation (PDM) is the most common
used output interface of MEMS microphones since it requires
minimal signal processing on the microphone and makes
microphone synchronizing easier [1]. However, PDM signals
are not as useful as the more commonly used Pulse Code
Modulation (PCM) signals for analyzing and reproducing
the input sound, so the output from PDM digital MEMS
microphones needs to be converted to PCM signals before
being further processed. Traditionally, PDM-to-PCM signal
conversion is done by software codecs or Digital Signal
Processors (DSPs). However, in recent years, FPGAs are
preferred over DSPs in many research utilizing large arrays
of digital MEMS microphones. FPGAs are advantageous over
DSPs when processing data from a large microphone array,
offering more IO ports and enabling a higher level of hardware
parallelism [2]. This article demonstrates one such FPGA
PDM-to-PCM conversion system using Cascaded Integrator-
Comb (CIC) filters and Finite Impulse Response (FIR) filters,
implemented on an Intel Arria V GX FPGA by our group.
The current system can process data coming from two PDM
digital microphones at the same time and output PCM data
using GPIO pins. Data output to computers using Ethernet is
currently being developed, and extending the current system
to a larger array of microphones is another future goal.

II. BACKGROUND

A. Pulse Code Modulation and Pulse Density Modulation

Pulse Code Modulation is the most common digital audio
form. Most audio file formats and the Compact Disc (CD) all

use PCM for encoding. In a PCM stream, the amplitude of the
analog signal is sampled at uniform intervals, and each sample
point is quantized to the nearest representable digital value [3].
Linear PCM is a specific type of PCM that quantize the analog
signal using linear, uniform steps. It is also the most commonly
used type of PCM. Some MEMS digital microphones output
PCM signal using the Inter-IC Sound (I2S) interface, but the
proportion of them is still small today due to the more complex
hardware structure to produce a PCM signal on a serial bus.

Pulse Density Modulation represents analog signals using
a radically different way. It only has a bit depth of 1, and
does not quantize the analog signal directly to the nearest
representable value (0 or 1 here). Instead, it uses delta-sigma
modulation to create a signal whose density represents the
strength of the analog signal [4]. By using a higher sampling
rate and utilizing the error diffusion property of delta-sigma
modulation, it can push the noise into higher, unused frequency
ranges and preserve details in lower, desired frequency ranges.
To sample audible sound with frequency ranging from 20 Hz
to 20 000 Hz, PCM encoding will use a sampling rate of
over 40 000 Hz from the Nyquist Sampling Theorem and
a typical rate is 48 000 Hz. However, to achieve about the
same audio quality, PDM encoding will use a much higher
sampling rate, usually over 2 MHz, and one real-life example
is the 2.8224 MHz used by Direct Stream Digital (DSD). A
comparison between PCM and PDM encoding of the same sine
wave is shown in Fig. 1. The noise distribution of a 2 MHz
PDM encoding of a 1 kHz sine wave is shown in Fig. 2. We
can see from the figure that in the 20 Hz to 20 000 Hz range
the amplitude of noise is less than 10−2 of the amplitude of
the 1 kHz input signal, which means more than −40 dB weaker
volume.

Since PDM encoding represents an analog signal’s ampli-
tude in density and has significant noise in higher frequency, it
cannot be used to directly analyze the input signal’s amplitude
properties or for playback. Superposition of signals is also
hard. Therefore, PDM encoding is only used in MEMS mi-
crophones for simpler encoding hardware and smaller size, but
the resulting signal needs to be converted to a PCM signal for
further processing. The process usually includes decimation
(i.e. down-sampling) and low-pass filtering, getting a signal
with lower sampling rate and removed high frequency noise.

Fig. 1: Comparison of PCM and PDM encoding.

10
2

10
3

10
4

10
5

10
6

Frequency (Hz)

10
-8

10
-6

10
-4

10
-2

10
0

|P
(f

)|

Input Signal in Frequency Domain

Fig. 2: FFT of a 2 MHz PDM sample of a 1 kHz sine wave.

B. FPGA in Microphone Array Signal Processing

The PDM to PCM conversion is usually done by specific
Digital Signal Processors (DSPs) or software codecs. These
methods are in particular good for a small number of mi-
crophones since the amount of data needed to be processed
is limited and do not require very high efficiency. However,
in researches utilizing a large PDM microphone array, Field-
Programmable Gate Array (FPGA) is considered as an alter-
native way to implement PDM to PCM conversion in recent
years[2].

To implement a real-time signal processing system for a
large microphone array, there is a greater computation demand.
FPGAs are suitable for this purpose since they can be used
to built highly customized circuits and it is easy to instanti-
ate multiple instances of the same hardware on them using
Hardware Description Languages. If we want to implement
PDM to PCM conversion for a 50-mic microphone array on an
FPGA, we can just instantiate one filter for each microphone
and save the aggregated output to internal or external storage
devices. On the other hand, if the same system is implemented
using specific DSP chips, we may need a separate chip
for each channel and a dedicated PCB is needed for the
interconnections of all the chips, making the design process
longer and the final product less flexible. Software codecs
running on general purpose processors will also have a inferior
performance than FPGA-based solutions since it is very hard

Fig. 3: Structure of CIC decimation and interpolation filters.

to achieve a high level of hardware parallelism. In addition,
due to advancements of FPGA fabrication technology, more
hardware resources are available on a single FPGA chip,
which enables the possibility to implement the whole signal
processing system on one chip. All these advantages of FPGAs
in large microphone array’s signal processing make them the
preferred choice in recent researches.

C. Cascaded Integrator-Comb Filter

Cascaded Integrator-Comb (CIC) filters are a special class
of FIR filters used in multi-rate digital signal processing, in
particular interpolation and decimation. Compared to standard
FIR filters, they are more economical since they do not include
multipliers and use limited storage components [5]. As its
name suggests, a CIC filter is a cascade of integrator filters and
comb filters. The structure of CIC decimation and interpolation
filters are shown in Figure 3. The difference between the two
configurations are the order of the two types of filters and
down/up sampler selection. The number of integrator filters
and comb filters are always equal.

CIC filters have three parameters: number of stages (N),
diffrential delay (M), and rate change factor (R). N refers
to the number of integrator filters and comb filters, M refers
to the delay of the comb filters, and R refers to the up/down
sampling rate. Frequency response (magnitude) of a CIC filter
can be represented using these three parameters:

|H(ej(2πf))| =
∣∣∣∣ sin(RMπf)

sin(πf)

∣∣∣∣N , f ∈ [0, 1). (1)

(Here f is normalized w.r.t. the input signal’s sampling fre-
quency.) Using this equation, we can plot the magnitude of the
frequency response of a CIC filter. One example is shown in
Fig. 4. As we can see from the example, a CIC filter has low-
pass qualities, filtering out most components with frequency
over f0/R (f0 is the input signal’s sampling rate).

In PDM-PCM conversion, CIC filter is used to decimate
the PDM signal with higher sampling rate and get a rough

0 0.5 1 1.5 2

Frequency [Hz] 10
5

-160

-140

-120

-100

-80

-60

-40

-20

0

20
A

m
p
lit

u
d
e
 [
d
B

]
CIC Filter's Frequency Response

Fig. 4: Frequency response (magnitude) of a CIC filter with
N = 9, M = 1, and R = 8. The input signal’s sampling rate
is 400 kHz.

PCM signal with fewer hardware resources than standard FIR
filters. However, since the CIC filter’s frequency response is
not ideal, an additional FIR filter working under the output
sampling rate is needed to rectify it. This will be discussed in
the following subsection.

D. Finite Impulse Response Filter

Finite Impulse Response (FIR) filters are one general class
of digital filters. The other general class of digital filter has
an opposite name, Infinite Impulse Response (IIR) filter. They
are classified by the form of their impulse response, and as
its name suggests, the impulse response of an FIR filter has a
finite duration and satisfies ∃N ∈ N ∀n > N h[n] = 0. Given
this property, the difference equation of an FIR filter always
has the form [6]

y[n] =

N∑
i=0

(bi · x[n− i]), (2)

since this implies the impulse response of the system is

h[n] =

N∑
i=0

(bi · δ[n− i]) =

{
bn if 0 ≤ n ≤ N

0 if n > N
. (3)

From this formula, we know that an FIR filter is uniquely
determined by its sequence of parameters (bi) and we can
characterize an FIR filter solely by a finite sequence of
parameters.

Although CIC filter is more economical than FIR filters
for decimation, as we can see from Fig. 4 that the amplitude
attenuation from 0 to f0/R is rather smooth, which is not
ideal for a low-pass filter. In addition, Since the output signal’s
sampling rate frequency is f0/R, from the Sampling Theorem
we would like to cut off at at most f0/2R instead of f0/R
in order to reduce aliasing. Therefore, an FIR filter is needed
to compensate for a CIC filter’s frequency response. The Intel
CIC filter IP core provides a MATLAB script for generating
the parameters for an FIR filter that can compensate a CIC

0 1 2 3 4 5

Frequency Hz 10
4

-120

-100

-80

-60

-40

-20

0

20

F
ilt

e
r

M
a

g
n

it
u

d
e

 R
e

s
p

o
n

s
e

 d
B

CIC and its Compensation Filter Responses

CIC

CIC Comp

Total Response (Floating Point)

Fig. 5: A CIC filter’s frequency response before and after an
FIR filter’s compensation. The parameters of the test is given
in the text body.

filter of certain parameter, and our group used that script to
design the FIR compensation filter. The frequency response of
the CIC filter used in our system before and after FIR filter’s
compensation is shown in Fig. 5. The parameters for the CIC
filter is N = 4, M = 1, and R = 40. The input PDM signal’s
sampling rate is f0 = 2 MHz, which gives an output PCM
sampling rate of f0/R = 50 kHz. The FIR compensation filter
is intended to make the total response cut off at fc = 20 kHz.
Since the FIR filter works at f0/R, its frequency response is
symmetric w.r.t. f0/2R = 25 kHz, and this intrinsic property
limits its ability to rectify the frequency response. The total
response for f from 0 to 25 kHz is considerably better as a
low-pass filter, but the response for f from 25 kHz to 50 kHz
is almost the same before and after compensation. That said,
adding the FIR compensation filter still improves the system’s
overall cut-off performance, so it is used in our final system.

III. METHODS

We built the PDM-to-PCM signal conversion system on an
Intel Arria V GX FPGA. To build the system, we utilized
the CIC filter and FIR filter IP cores provided in Intel’s IP
catalog. In additional to the basic parameters of the two types
of filters, the IP cores also have additional useful parameters
such as output rounding settings and flow control support. The
configuration interfaces for the CIC and FIR filter are shown
in Fig. 6. As mentioned in the previous section, a MATLAB
script provided by the CIC filter IP core is used to generate
the parameters of the FIR filter.

In addition to setting the parameters of the two filters,
a PLL is used to generate synchronized clocks at different
frequencies, and a data multiplexer is written to output the
processed PCM signals from multiple microphones on the
same GPIO pins. The current system is able to process data
from two PDM microphones at the same time and output the
multiplexed results on GPIO pins, and transferring the results
to a PC using Ethernet is under development.

Fig. 6: Configuration interfaces for the CIC (above) and FIR
(below) filter IP cores.

IV. RESULTS

We test the completed PDM-to-PCM conversion system
based on CIC and FIR filters using both simulation and real
hardware test. For simulation, we conducted the test for one-
mic setup. The filter’s parameters are the same as the settings
at the end of Section II-D. The input analog signal is a
series of sine waves at different frequencies overlaid together.
The sine waves’ frequencies is an arithmetic sequence from
2 kHz to 40 kHz and they all have the same amplitude. It is
sampled using software delta-sigma modulation to generate a
2 MHz PDM signal, and the signal is fed to the conversion
system using on-board RAM. The output PCM signal is
extracted from the simulator and then imported to MATLAB
for analysis. The FFT of the input analog signal and the
output PCM signal is shown in Fig. 7. As we can see from
the result, the sine waves are indeed low-pass filtered with
a cut-off frequency of 20 kHz. There are slight distortions
in the 0 to 18 kHz frequency range and the 20 kHz spike is
considerably attenuated, but overall the system convert the
input PDM signal to an PCM signal with reasonably good
fidelity.

For the real hardware test, we compiled the Verilog HDL
code for the system and uploaded the design onto the board,
and then connected two PDM microphones we have and used
digital oscilloscope to capture the outputs on the GPIO pins.
The output data are then converted to a PCM audio file and
we evaluated the playback quality qualitatively. Currently, the
playback quality is good for one-mic setup without multiplex-
ing but is a little noisy for two-mic setup, but we have good

0 1 2 3 4 5

Frequency (Hz) 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

|P
(f

)|

Input Signal in Frequency Domain

(a) FFT of the input analog signal.

0 0.5 1 1.5 2 2.5

Frequency (Hz) 10
4

0

0.005

0.01

0.015

0.02

0.025

|P
(f

)|

Output Signal in Frequency Domain

(b) FFT of the output PCM signal.

Fig. 7: Analysis of the simulation results.

reason to believe the noise in the two-mic setup are caused by
the oscilloscope’s error when capturing high frequency data
and this will be resolved after Ethernet is used to transfer the
output data.

V. CONCLUSION AND FUTURE WORK

In conclusion, this essay presents a PDM-to-PCM micro-
phone signal conversion system implemented on an FPGA.
The system mainly consists of CIC and FIR filters, and can
currently receive data from two microphones at the same
time and output the converted PCM signal on GPIO pins.
The modular characteristic of Verilog HDL code makes the
code for this system easily extensible for a larger microphone
array setup, and the current code serves as a basis for the
future system with a larger microphone array. Future work
for this project includes completing the Ethernet data transfer
subsystem, extending the current code base for a larger micro-
phone array, implementing beamforming algorithms for object
detection, and exploring applications of object detection and
other possible functions in the field of embedded security and
human-computer interaction.

REFERENCES

[1] J. Lewis, “Analog and digital mems microphone design considerations,”
Technical Article MS-2472. Analog Devices, 2013.

[2] B. Da Silva, A. Braeken, and A. Touhafi, “Fpga-based architectures for
acoustic beamforming with microphone arrays: trends, challenges and
research opportunities,” Computers, vol. 7, no. 3, p. 41, 2018.

[3] Wikipedia. (2020) Pulse-code modulation — wikipedia, the free
encyclopedia. [Online]. Available: http://en.wikipedia.org/w/index.php?
title=Pulse-code%20modulation&oldid=980465874

[4] ——. (2020) Pulse-density modulation — wikipedia, the free
encyclopedia. [Online]. Available: http://en.wikipedia.org/w/index.php?
title=Pulse-density%20modulation&oldid=954286453

[5] E. Hogenauer, “An economical class of digital filters for decimation
and interpolation,” IEEE transactions on acoustics, speech, and signal
processing, vol. 29, no. 2, pp. 155–162, 1981.

[6] Wikipedia. (2020) Finite impulse response — wikipedia, the free
encyclopedia. [Online]. Available: http://en.wikipedia.org/w/index.php?
title=Finite%20impulse%20response&oldid=964563582

http://en.wikipedia.org/w/index.php?title=Pulse-code%20modulation&oldid=980465874
http://en.wikipedia.org/w/index.php?title=Pulse-code%20modulation&oldid=980465874
http://en.wikipedia.org/w/index.php?title=Pulse-density%20modulation&oldid=954286453
http://en.wikipedia.org/w/index.php?title=Pulse-density%20modulation&oldid=954286453
http://en.wikipedia.org/w/index.php?title=Finite%20impulse%20response&oldid=964563582
http://en.wikipedia.org/w/index.php?title=Finite%20impulse%20response&oldid=964563582

	Introduction
	Background
	Pulse Code Modulation and Pulse Density Modulation
	FPGA in Microphone Array Signal Processing
	Cascaded Integrator-Comb Filter
	Finite Impulse Response Filter

	Methods
	Results
	Conclusion and Future Work
	References

